Spikes super-resolution with random Fourier sampling

SPARS, 2017

Yann Traonmilin, **Nicolas Keriven**, Rémi Gribonval, Gilles Blanchard

INRIA Rennes University of Potsdam

Spikes super-resolution (deconvolution)

State of the art : Guarantees for practical estimation methods (Shannon-type condition).

[Candès, De Castro, Duval, etc...]

Spikes super-resolution (deconvolution)

State of the art : Guarantees for practical estimation methods (Shannon-type condition).

[Candès, De Castro, Duval, etc...]

Equally spaced frequencies in Fourier domain.

SPARS 2017, Nicolas Keriven

Compressive Sensing, sparsity

State of the art : Guarantees for practical dimensionality-reduction schemes and practical estimation methods (in Hilbert space)

[Candès, Donoho, Gribonval, Puy, Dirksen, Traonmilin, etc...]

Compressive Sensing, sparsity

State of the art : Guarantees for practical dimensionality-reduction schemes and practical estimation methods (in Hilbert space)

[Candès, Donoho, Gribonval, Puy, Dirksen, Traonmilin, etc...]

Random design of measurement matrix.

SPARS 2017, Nicolas Keriven

. . .

Compressive *k*-means [Keriven et al., ICASSP 2017] Random Moments for... [Keriven et al., SPARS 2017] :

- We can do k-means from the sketch of a database
- ... by recovering linear combination of Diracs from random linear measurements
- The Compressive Learning-OMP (CL-OMP) heuristic (Keriven et al., SPARS 2015, ICASSP 2016) performs well in practice
 - OMP + non-convex updates

Consequence for super-resolution?

Introduction

Sparse recovery in infinite-dimensional spaces

Experiments

Conclusion

Inverse problem

Measurements

$$y = Ax_0 + e$$

- Finite dimension: classical Signal Processing. *A* = convolution, sub-sampling, etc....
- Infinite dimension (Hilbert) : "generalized" sampling (Adcock and Hansen, Traonmilin and Gribonval)
- Infinite dimension (Banach) : spikes super-resolution, A = "low-pass" filter

Dimension reduction and low-complexity

■ *A* is dimension reducing : regularity comes from "low-complexity" models Σ Dimension reduction and low-complexity

- A is dimension reducing : regularity comes from "low-complexity" models Σ
- Sparsity : $\Sigma = \Sigma_k$ = set of *k*-sparse vectors

Dimension reduction and low-complexity

- A is dimension reducing : regularity comes from "low-complexity" models Σ
- Sparsity : $\Sigma = \Sigma_k$ = set of *k*-sparse vectors
- Super-resolution: Σ = Σ_{k,ε} = set of sums of k
 Diracs with supports separated by ε (in a bounded domain)

$$\Sigma_{k,\epsilon} = \left\{ \sum_{i=1,k} a_i \delta_{t_i} : \forall r \neq l, \|t_r - t_l\|_2 \ge \epsilon, \|t_l\|_{\infty} \le 1, \mathbf{a} \in \mathcal{C}_{\mathbf{a}} \right\}$$

Measurement methods

$$Ax_0 = \left(\int_t x_0(t)f_i(t)dt\right)_{i=1,m}$$
où $f_i(t) = e^{j\langle \omega_i,t\rangle}$, $(\omega_i)_{i=1,m} \subset \mathbb{R}^d$.

Measurement methods

$$Ax_0 = \left(\int_t x_0(t)f_i(t)dt\right)_{i=1,m}$$

où
$$f_i(t) = e^{j\langle \omega_i,t
angle}$$
, $(\omega_i)_{i=1,m} \subset \mathbb{R}^d$.

Measurement methods (1)

$$Ax_0 = \left(\int_t x_0(t)f_i(t)dt\right)_{i=1,m}$$

où $f_i(t) = e^{j\langle \omega_i,t \rangle}$, $(\omega_i)_{i=1,m} \subset \mathbb{R}^d$.

- A_U : Uniform Fourier sampling (low pass filter): frequencies $(\omega_i)_{i=1,m}$ taken uniformly in $\left[-\frac{\pi q}{2}, \frac{\pi q}{2}\right]^d$ where q is an integer and $m = (2q+1)^d$.
- Estimation of x_0 possible if $m \ge \frac{2}{\epsilon}$ (Work of Candès, De Castro, Duval ... !!! Results are usually given on the torus !!!)

Measurement methods (2)

$$Ax_0 = \left(\int_t x_0(t)f_i(t)dt\right)_{i=1,m}$$

où $f_i(t) = e^{j\langle \omega_i,t\rangle}/c_{\omega_i}$, $(\omega_i)_{i=1,m} \subset \mathbb{R}^d$.

- A_R : Random (weighted) Fourier sampling: ω_i drawn at random from $\Lambda \propto c_{\omega}^2 e^{-\sigma^2 ||\omega||_2^2/2}$ (with scale parameter σ).
 - use of "smoothing" weights c_{ω}
- CL-OMP heuristic for estimating x_0 (Keriven et al. 2016,2017)

• With A_R , the "ideal" decoder is :

$$x^* \in \arg\min_{x\in\Sigma} \|Ax - y\|_2$$

Information preservation guarantees?

$$\|x^*-x_0\|\lesssim \|e\|_2+d(x_0,\Sigma)$$

Information Preservation Guarantee

Theorem (Blanchard, Gribonval, Keriven, Traonmilin) : Assume

$$m \geq O(k^2 d^2(\operatorname{polylog}(k, d) + \log(1/\epsilon))).$$

Then with high probability on A_R , for all x_0 and $y = A_R x_0 + e$, we have

$$\|x^*-x_0\|_h \lesssim \|e\|+d_h(x_0,\Sigma)\|$$

where $d_h(x_0, \Sigma_{k,\epsilon}) = \inf_{x \in \Sigma_{k,\epsilon}} ||x_0 - x||_h$ is the modelisation error (= 0 if x_0 is exactly a sum of Diracs).

Restricted Isometry Property

For $x \in \Sigma - \Sigma$:

$$(1-\delta)\|x\|^2 \le \|Ax\|^2 \le (1+\delta)\|x\|^2$$

- Sufficient condition on A to guarantee success of the ideal decoder (and convex relaxation in classical compressive sensing)
- Sub-gaussian matrices have this for many Σ (Puy et al. 2015).
- RIP in super-resolution framework?

Kernel, Hilbert space

■ In the Banach space of finite-signed measures, the low-pass filter (A_U) does not satisfies the RIP for the natural metric $\| \cdot \| = \| \cdot \|_{TV}$ (total variation of measures)

- One can build kernel norm to get a Hilbert structure. In our case it is actually linked to the chosen resolution :

$$\|\cdot\| := \|\cdot\|_{h} = \|h \star \cdot\|_{2}$$
(1)

where $h(t) = e^{-\frac{\|t\|_2^2}{2\sigma^2}}$ (gaussian kernel, σ scale parameter used for defining A_R).

This metric can be seen as a distance at some resolution in the space of finite signed measures.

Does A_R satisfy the RIP on $\Sigma_{k,\epsilon}$?

Classical two-steps proof of the RIP

• Pointwise concentration : for $x_1, x_2 \in \Sigma_{k,\epsilon}$,

$$||A(x_1 - x_2)|| \approx ||x_1 - x_2||_h$$
 (2)

(Bernstein concentration inequality)

Does A_R satisfy the RIP on $\Sigma_{k,\epsilon}$?

Classical two-steps proof of the RIP

• Pointwise concentration : for $x_1, x_2 \in \Sigma_{k,\epsilon}$,

$$\|A(x_1-x_2)\| \approx \|x_1-x_2\|_h$$
 (2)

(Bernstein concentration inequality)

The normalized secant set
 S = { u/||u||_h : u ∈ Σ_{k,ϵ} − Σ_{k,ϵ} } has finite covering numbers (finite "upper box counting" dimension):

$$N(S, \alpha) \le \left(\frac{C}{\alpha}\right)^{-\dim(S)}$$
 (3)

Key principle

The result comes from the ϵ -separation condition and the definition of the kernel.

Let $u \in \Sigma - \Sigma$. Without separation $u = x_1 - x_2$ $u = u_1 + u_2 + \dots + u_{2k}$ u_1 u_2 u_2 u_1 u_2 u_2

Pythagore-like bound :

$$1 - \beta \le \frac{\|\sum_{l=1}^{2k} u_l\|_h^2}{\sum_{l=1}^{\ell} \|u_l\|_h^2} \le 1 + \beta.$$

Measurement schemeUniform frequenciesRandom frequenciesNumber of meas.m $O(1/\epsilon)$ $O(k^2d^2\text{polylog}(k,d)\log(1/\epsilon))$

- Dependency in ϵ improved
- Close to case with grid
 - grid size O(1/ϵ^d), sparse recovery: sparsity times log of grid size O(kd log(1/ϵ))
- III Technically speaking, Gaussian random frequencies are not bounded III

Introduction

Sparse recovery in infinite-dimensional spaces

Experiments

Conclusion

In practice

Ideal decoder non-convex.

- convex relaxation sometimes possible with TV norm [Candès, De Castro, Duval...], difficult in high dimension
- Heuristic: Compressive Learning-OMP (CL-OMP)
 - Greedy approach + non-convex gradient descent updates
 - sketchml.gforge.inria.fr

Number of measurements

Phase transition: $m \approx O(kd)$ seems sufficient (left d = 10, right k = 10).

Choice of A_R (frequency distribution)

 ϵ separation w.r.t. scale parameter σ

Toward compressive super-resolution?

Introduction

Sparse recovery in infinite-dimensional spaces

Experiments

Conclusion

- What we have done:
 - RIP in the space of finite signed measures
 - Information preservation guarantees
 - Encouraging practical results
- Outlooks
 - Practical random acquisition?
 - Extend comparison with existing results (what about kernel norms?)
 - Algorithms with guarantees : convex relaxation in any dimension? basin of attraction with the RIP?

Thank you !

yanntraonmilin.wordpress.com people.irisa.fr/Nicolas.Keriven sketchml.gforge.inria.fr !!!Preprint online very soon!!!

Introduction

Sparse recovery in infinite-dimensional spaces

Experiments

Conclusion

SPARS 2017, Nicolas Keriven