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Spikes super-resolution (deconvolution)
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State of the art : Guarantees for practical estimation methods
(Shannon-type condition).

[Candès, De Castro, Duval, etc... ]

Equally spaced frequencies in Fourier domain.
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Compressive Sensing, sparsity

?

T

State of the art : Guarantees for practical
dimensionality-reduction schemes and practical estimation methods
(in Hilbert space)

[Candès, Donoho, Gribonval, Puy, Dirksen, Traonmilin, etc...]

Random design of measurement matrix.
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Previous work on learning

Compressive k-means [Keriven et al., ICASSP 2017]

Random Moments for... [Keriven et al., SPARS 2017] :
We can do k-means from the sketch of a database
...

... by recovering linear combination of Diracs
from random linear measurements

The Compressive Learning-OMP (CL-OMP)
heuristic (Keriven et al., SPARS 2015, ICASSP 2016) performs
well in practice

OMP + non-convex updates
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Goal

Consequence for super-resolution?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

?

SPARS 2017, Nicolas Keriven 5



Layout

Introduction

Sparse recovery in infinite-dimensional spaces

Experiments

Conclusion

SPARS 2017, Nicolas Keriven 6



Inverse problem

Measurements
y = Ax0 + e

Finite dimension: classical Signal Processing.
A = convolution, sub-sampling, etc....

Infinite dimension (Hilbert) : ”generalized” sampling (Adcock
and Hansen, Traonmilin and Gribonval)

Infinite dimension (Banach) : spikes super-resolution, A =

”low-pass” filter
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Dimension reduction and low-complexity

A is dimension reducing : regularity comes from
”low-complexity” models Σ

Sparsity : Σ = Σk = set of k-sparse vectors

Super-resolution: Σ = Σk ,ε = set of sums of k
Diracs with supports separated by ε (in a bounded
domain)

Σk,ε =

∑
i=1,k

aiδti : ∀r 6= l , ‖tr − tl‖2 ≥ ε, ‖tl‖∞ ≤ 1, a ∈ Ca


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Measurement methods

Ax0 =

(∫
t

x0(t)fi(t)dt

)
i=1,m

où fi(t) = e j〈ωi ,t〉, (ωi)i=1,m ⊂ Rd .

Uniform (AU) Random (AR)
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Measurement methods (1)

Ax0 =

(∫
t

x0(t)fi(t)dt

)
i=1,m

où fi(t) = e j〈ωi ,t〉, (ωi)i=1,m ⊂ Rd .

AU : Uniform Fourier sampling (low pass filter):
frequencies (ωi)i=1,m taken uniformly in [−πq

2
, πq

2
]d where q is

an integer and m = (2q + 1)d .

Estimation of x0 possible if m ≥ 2
ε

(Work of Candès, De
Castro, Duval ... !!! Results are usually given on the torus !!!)
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Measurement methods (2)

Ax0 =

(∫
t

x0(t)fi(t)dt

)
i=1,m

où fi(t) = e j〈ωi ,t〉/cωi
, (ωi)i=1,m ⊂ Rd .

AR : Random (weighted) Fourier sampling: ωi drawn at
random from Λ ∝ c2ωe

−σ2‖ω‖22/2 (with scale parameter σ).

use of ”smoothing” weights cω

CL-OMP heuristic for estimating x0 (Keriven et al. 2016,2017)
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Ideal decoder

With AR , the ”ideal” decoder is :

x∗ ∈ arg min
x∈Σ
‖Ax − y‖2

Information preservation guarantees?

‖x∗ − x0‖ . ‖e‖2 + d(x0,Σ)
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Information Preservation Guarantee

Theorem (Blanchard, Gribonval, Keriven, Traonmilin) :
Assume

m ≥ O(k2d2(polylog(k , d) + log(1/ε))).

Then with high probability on AR , for all x0 and
y = ARx0 + e, we have

‖x∗ − x0‖h . ‖e‖+ dh(x0,Σ)

where dh(x0,Σk ,ε) = infx∈Σk,ε
‖x0 − x‖h is the

modelisation error (= 0 if x0 is exactly a sum of
Diracs).

SPARS 2017, Nicolas Keriven 13



Restricted Isometry Property

For x ∈ Σ− Σ:

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2

Sufficient condition on A to guarantee success of the ideal
decoder (and convex relaxation in classical compressive
sensing)

Sub-gaussian matrices have this for many Σ (Puy et al. 2015).

RIP in super-resolution framework?
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Kernel, Hilbert space

In the Banach space of finite-signed measures, the low-pass
filter (AU) does not satisfies the RIP for the natural metric
‖ · ‖ = ‖ · ‖TV (total variation of measures)

One can build kernel norm to get a Hilbert structure. In our
case it is actually linked to the chosen resolution :

‖ · ‖ := ‖ · ‖h = ‖h ? ·‖2 (1)

where h(t) = e−
‖t‖22
2σ2 (gaussian kernel, σ scale parameter used

for defining AR).

This metric can be seen as a distance at some resolution
in the space of finite signed measures.
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Does AR satisfy the RIP on Σk ,ε?

Classical two-steps proof of the RIP

Pointwise concentration : for x1, x2 ∈ Σk,ε,

‖A(x1 − x2)‖ ≈ ‖x1 − x2‖h (2)

(Bernstein concentration inequality)

The normalized secant set
S = { u

‖u‖h : u ∈ Σk,ε − Σk,ε} has finite covering

numbers (finite ”upper box counting” dimension):

N(S, α) ≤
(
C

α

)−dim(S)

(3)
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Key principle

The result comes from the ε-separation condition and the definition
of the kernel.

Let u ∈ Σ− Σ.

Without separation With separation

Pythagore-like bound :

1− β ≤ ‖
∑2k

l=1 ul‖2h∑`
l=1 ‖ul‖2h

≤ 1 + β.
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Discussion

Measurement scheme Uniform frequencies Random frequencies

Number of meas. m O(1/ε) O(k2d2polylog(k, d) log(1/ε))

Dependency in ε improved

Close to case with grid

grid size O(1/εd), sparse recovery: sparsity times log of
grid size O(kd log(1/ε))

!!! Technically speaking, Gaussian random
frequencies are not bounded !!!
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In practice

Ideal decoder non-convex.

convex relaxation sometimes possible with TV norm
[Candès, De Castro, Duval...], difficult in high dimension

Heuristic: Compressive Learning-OMP (CL-OMP)

Greedy approach + non-convex gradient descent updates

sketchml.gforge.inria.fr
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Number of measurements
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Choice of AR (frequency distribution)
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Toward compressive super-resolution?

Uniform Fourier

Random Fourier
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Conclusion

What we have done:

RIP in the space of finite signed measures

Information preservation guarantees

Encouraging practical results

Outlooks

Practical random acquisition?

Extend comparison with existing results (what about
kernel norms?)

Algorithms with guarantees : convex relaxation in any
dimension? basin of attraction with the RIP?
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Thank you !

yanntraonmilin.wordpress.com

people.irisa.fr/Nicolas.Keriven
sketchml.gforge.inria.fr

!!!Preprint online very soon!!!
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