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Spikes super-resolution (deconvolution)

State of the art : Guarantees for practical estimation methods
(Shannon-type condition).
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Equally spaced frequencies in Fourier domain.
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Compressive Sensing, sparsity
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Compressive Sensing, sparsity
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State of the art : Guarantees for practical

dimensionality-reduction schemes and practical estimation methods
(in Hilbert space)

[Candes, Donoho, Gribonval, Puy, Dirksen, Traonmilin, etc...]

Random design of measurement matrix.
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Previous work on learning

Compressive k-means [Keriven et al., ICASSP 2017]
Random Moments for... [Keriven et al., SPARS 2017] :
m We can do k-means from the sketch of a database

m ... by recovering linear combination of Diracs
from random linear measurements

m The Compressive Learning-OMP (CL-OMP)
heuristic (Keriven et al., SPARS 2015, ICASSP 2016) performs
well in practice

m OMP + non-convex updates
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Goal

Consequence for super-resolution?
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Layout

Sparse recovery in infinite-dimensional spaces
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Inverse problem

m Measurements
y=Axy+ e

m Finite dimension: classical Signal Processing.
A = convolution, sub-sampling, etc....

m Infinite dimension (Hilbert) : " generalized” sampling (Adcock
and Hansen, Traonmilin and Gribonval)

m Infinite dimension (Banach) : spikes super-resolution, A =
"low-pass” filter
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Dimension reduction and low-complexity

m A is dimension reducing : regularity comes from
" low-complexity” models 2
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Dimension reduction and low-complexity

m A is dimension reducing : regularity comes from
" low-complexity” models 2

m Sparsity : . = X, = set of k-sparse vectors

m Super-resolution: ¥ = ¥, . = set of sums of k
Diracs with supports separated by € (in a bounded
domain)

The = { > @by Vr# Lt —tlla > e |t <1la€ ca}

i=1,k
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Measurement methods

Ay = ( /t xo(t)f,-(t)dt) o

ol f(t) = &), (w;)jzr,m C RY,
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Measurement methods

Ay = ( /t xo(t)f,-(t)dt) o

ol f(t) = &0, (w;)jmr,m C RY,

w1 Wm w

Uniform (Ay) Random (Ag)
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Measurement methods (1)

Axp = (/txo(t)f,-(t)dt> .

ol fi(t) = &0, (w))iztm C R,

m Ay: Uniform Fourier sampling (low pass filter):
frequencies (wi)i—1,m taken uniformly in [—752, 52 d
an integer and m = (2q + 1)°.

m Estimation of xp possible if m > % (Work of Candes, De

where q is

Castro, Duval ... !l Results are usually given on the torus !!!)
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Measurement methods (2)

Axp = (/txo(t)f,-(t)dt> .

ol fi(t) = &V /e, (wi)imrm C R

m Ag: Random (weighted) Fourier sampling: w,; drawn at

2 2 .
random from A o< c2e I«I2/2 (with scale parameter o).

m use of "smoothing” weights c,

m CL-OMP heuristic for estimating xo (Keriven et al. 2016,2017)
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|deal decoder

m With Ag, the "ideal” decoder is :

x* € argmin ||Ax — y||2
XEX

m Information preservation guarantees?

X" = xoll < llefl2 + d(x0, X)

SPARS 2017, Nicolas Keriven
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Information Preservation Guarantee

Theorem (Blanchard, Gribonval, Keriven, Traonmilin) :
Assume

m > O(k*d?*(polylog(k, d) + log(1/€))).

Then with high probability on Ag, for all xp and
y = Agrxo + e, we have

X" = xolln < [lell + dh(x0, )

where dy(x0, i) = infeex,  [[X0 — x]|5 is the
modelisation error (= 0 if x is exactly a sum of
Diracs).
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Restricted Isometry Property

For x € ¥ — X:

(1= 0)lIx]l* < [1Ax]]* < (1 + 8)]x||*

m Sufficient condition on A to guarantee success of the ideal
decoder (and convex relaxation in classical compressive
sensing)

m Sub-gaussian matrices have this for many ¥ (Puy et al. 2015).

m RIP in super-resolution framework?
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Kernel, Hilbert space

m In the Banach space of finite-signed measures, the low-pass
filter (Ay) does not satisfies the RIP for the natural metric
Il |l =1 -|l7v (total variation of measures)
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Kernel, Hilbert space

m In the Banach space of finite-signed measures, the low-pass
filter (Ay) does not satisfies the RIP for the natural metric
Il |l =1 -|l7v (total variation of measures)

m One can build kernel norm to get a Hilbert structure. In our
case it is actually linked to the chosen resolution :

[ AFs= 1 lln = (1A [l (1)

_ ez .
where h(t) = e 207 (gaussian kernel, o scale parameter used

for defining Ag).

m This metric can be seen as a distance at some resolution
in the space of finite signed measures.
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Does Ag satisfy the RIP on X .7

Classical two-steps proof of the RIP

m Pointwise concentration : for xq,x € Xk,

A — x2)|| = |Ix1 — x2l[n (2)

(Bernstein concentration inequality)

SPARS 2017, Nicolas Keriven 16



Does Ag satisfy the RIP on X .7

Classical two-steps proof of the RIP

m Pointwise concentration : for xq,x € Xk,

[ACa — )|l = [[x1 — x| (2)
(Bernstein concentration inequality)

m The normalized secant set
S = {m LU E Xk — Xi) has finite covering
numbers (finite "upper box counting” dimension):

(3)
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Key principle

The result comes from the e-separation condition and the definition
of the kernel.

Letue X — L.
Without separation With separation
U==T1 —T2
U =11 — T2 T
n©® u - .
..l .. l.:.. ul.. u® P ¢ ;zk-

Pythagore-like bound :

Z/:1 ||u/||% N
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Discussion

Measurement scheme  Uniform frequencies Random frequencies

Number of meas. m O(1/e) O(k?d?polylog(k, d)log(1/€))

m Dependency in € improved
m Close to case with grid

m grid size O(1/¢?), sparse recovery: sparsity times log of
grid size O(kd log(1/¢))

m !!l Technically speaking, Gaussian random
frequencies are not bounded !!!
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Experiments
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In practice

m |deal decoder non-convex.

m convex relaxation sometimes possible with TV norm
[Candes, De Castro, Duval...], difficult in high dimension

m Heuristic: Compressive Learning-OMP (CL-OMP)

m Greedy approach + non-convex gradient descent updates

m sketchml.gforge.inria.fr
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Number of measurements

0.02 0.04 0.06 0.08

m/(kd)

Phase transition: m ~ O(kd) seems sufficient (left d = 10, right k = 10).
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Choice of Ag (frequency distribution)

15
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€ separation w.r.t. scale parameter o
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Toward compressive super-resolution?

Uniform Fourier

Random Fourier
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Layout

Conclusion
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Conclusion

m What we have done:
m RIP in the space of finite signed measures
m Information preservation guarantees
m Encouraging practical results
m Outlooks
m Practical random acquisition?

m Extend comparison with existing results (what about
kernel norms?)

m Algorithms with guarantees : convex relaxation in any
dimension? basin of attraction with the RIP?
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Thank you !

yanntraonmilin.wordpress.com

people.irisa.fr/Nicolas.Keriven
sketchml.gforge.inria.fr

I11Preprint online very soon!!!
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Questions?

Introduction

Sparse recovery in infinite-dimensional spaces

Experiments

Conclusion
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